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NATIONAL ADVISORY COMMITTEXZ FOR AERONAUTICS

TECHNICAL NOTE NO. 970

ON THE CIRCULATORY SUBSONIC FTLOW OF » COMPRESSIBLE PLUID
PAST A CIRGULAR CYLINDER

By Lipman Bers
SUMMARY

The cireulatory subsonic flow around an infinlte circu-
lar cylinder is compubted using the linearized pressure-volume
relation, by a method developed in a previous report, TFor-
mulas and graphs are given for the velocity and pressure &is-
tributions, the circulation, the 1ift, and the dependence of
the eritical Mach number upon the position of the stagnation
point.

INTRODUCT IOX

The rigorous solution of the differential equations of
a two-dimensional steady potential compressible gas flow in-
volves considerable mathematical 4difficulties. Numerical in-
tegration is rather laborious and hardly ever ylelds results
of a general character. Therefore, considerable attention
was given to approximate enalytical methods.

Tchaplygin (reference 1) noticed that the differential
equation of the velocity potential takes & rather simple form
if the exponent Y 1in the polytropic pressure-density rela-—
tion is replaced by ~1. The equation then becomes the well-
known équation of a minimal surface. Furthermore, in %he so-
called hodograph plane, the equation may be transformed into
the Laplace equation. The physical meaning of the linearized
pressure-volume relation (¥ = -1) has been clarified by
Bugsemann (reference 2) and especially by Von Karmén (refer-
ence 3) and Tsien (reference 4). They showed that using this
relation amounts to replacing ths actual pressurs-volume curve
by its tangent. Another way of ‘Justifying the use of the lin-
earized equation of state is indicated in this report.

RESTRICTED



NACA TN No. 970 2

Tasien derived a formula transforming a2 given incompress-
ible flow around a closed profile into & compressible flow
(satisfying the linearized equation of state) around another
(slightly distorted) profile, However, this formula is ap-
plicadle only to circulation-free flows. In a previous re-
port (reference 5) the author developed formulas which per-
mit the construction of cireulatory flows as well. It has
been shown that under very general condltions every lncom-
pressible flow yields a compressible flow and that agll com-
pressible flows may be obtained in this way.

In the presant report, this method is tested and illus-
trated by computing the circulatory flow around a circular
cylinder. (The circulation-free flow around a circular cyl-
inder has been treated by Tamada, who used Tsien's method.)
(See reference 6.) The circular profile, although of no
technical importance, has been chosen because of the simplic-
ity of the computations and the possibility of comparing re-
sults with those obtained by different methods.

It should be emphasized that the use of the linearized
pressure~volume relation restricts the investigation to
purely subsonic flows.

The investigation, conducted at Brown University, was
sponsored by and carried out with the financial assistance
of the National Advisory Committee for Aeronautics.

The author is indebted to Mr. Charles Saltzer for vale
uable assistance.

SYMBOLS

a local speed of sound
a speed of sound at a2 stagnatlon point
CL 1ift coefficient

G(t) normalized complex potential of an incompressible flow
in the {-plane .

L 1ift per unit span

M local Mach number
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Mm stream Mach number (Mach number at infini?y)

Mo, c critical stream Mach nuamber

n parameter defined By the equation n = .~/€7+.(qm/a.o)a

P profile in thé z-plane {(the plane of the compressible
flow)

P pressure

Po pressure at the stagnation point

q local speed of a compressible flow

ag value of q for which q = a

9 o speed of the compressible flow at infinity
R radius of the circular cylinder

R, auxiliary parameter defined by the equation
Ry, = cos §/cos B

Rp radius of curvature of the profile P

Rn: radius of curvature of the bprofile T
r parameter defined by the equation 2r/(1 =~ r®) = q¢/20
S pressure coefficient

u,v components of the local velocity of the compressible flow

g = X + iy complex variable in the plane of the compressible

flow
24:2,5,%, auxiliary conmplex -~ ariatles
14 absolute value of the argument of a stagnation point of

the ccmpressible flow about & circular cylinder
(angle of attack)

B,8,B,,8 angles used to locate stagnation points of auxil-

iary flows in the §{-plane
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Y exponent in the polytropic relation

Teo circilation of the compressible flow
Ty circulation of the incompressidble flow

¢ angle defined by the equation & = w/2 ~ ¢

£ =t + i complex variable in the plane of the auxiliary
incompressihle flow

A argument of a point on the circle 2] = R
parameter defined by the equation M® = (n - 1)/(n + 1)

[
N profile in the plane of the incompressible flow ({-plane)
p ~ density

o

stagnation density

o absolute value of the argument of & stagnation point of
the flow in the 2Z-~plans

® ¥ angles used to locate points on the profile N

velocity potential of the compressible flow

angle defined by the equation X = (n/2 - 8)/(2 - n)
w' argument of a point on the cross section of the eirecular

cylinder
ANALYSIS .
1. Reduction of the Problem to the Differential Equation
of a Minimal Surface

Let uw and v denote the x and y components of the
velocity of a steady two-dimensional flow of a commressible
fluid, If the flow is irrotational, a velocity potential
o{x,y) may be introduced,such that

u=a°g~'£ v=ao—g_§g (1)
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where a;, 1s the speed of sound at a stagnation point. The
continuity equation yields the equation

o i) 8 S0\ y
3x (p 3x) * Sy (p oy ° (2)

p Ybeing the density.

If the flow occupies the domain exterior to a closed
profile P and at infinity approaches & uniform flow in the
positive x direction, ¢ must satisfy the boundary condi-
tions

-

g
ok

%

- 0 as x® + y® > o (3)
o .

where q, 1is the speed at infinity (speed of the undisturbed
flow), and

S© _ o on P ()
on

(gl denotes differentiation in the direction normal to the
o ’
profile P).

The speed of the fluid q is given by

et (@) @]

and the Kutta-Joukowski condition requires that

1< o (5)

It will be assumed that the pressure p and the density
are connected by the relation |

p=A+BpY (6)

where A, B, and Y are constants. For all physically im-
portant cases

1<Y <2
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The standard value of Y for air is 1.405. Equation (6) and
Bernoulli's theorem imply that

1
Y - l 2 'Y-l e
= R S T« S (7)
a® = ao3 L q® (8)
- . 2
¥ = (a/2q) _ (9)
v - 2
1~ 1 (Q/%o)

2

Here p, is the density at a stagnation point, a = ap/dp,

the local speed of sound and M = q/a, the local Mach number.
Tt 1s seen that the flow is subsonlc as long as

s<n i o

~ Bquation (7) can be written as a relatlon (depending on
the parameter Y) between the two dimensionless quantitles

Equation (2) can now be written as

2 ([ /@) -~ @) v

S UM RN

Expanding the right side of (11) into a power serles in
q/a0 yields :
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f-__, w)_l___s_>a+i_~__1_q_)* - .
8. ao

Bvidently, for small values of q_/a0 the relation between p

and qfa, 4is only slightly affected by the value of Y. In
particular, if the actual value of Y is replaced by ~1, the
resulting error in p/p0 is of the same order of magnitude

as
Q

Table I gives the values of p/fp, for Y = 1,405 and
¥ = -1 and for values of gq/a, from 0 to 0.912 (0.912 is
the value of gqg /&, for ¥ = 1.4G5).

On the basgis of the foregoing rsmarks it may be con-
cluded that for flows where q/ao is small only a slight
error will be made if the actual value of Y 1is replaced by
-1 in (11). Since

1

-l) =Jl+ ( )a
a/ao

-TABLE I.- DENSITY AS A FUNCTION OF SPEED

—|0 0.1 (0.2 0.3 i{0.% (0.5 0.6 0.7 ]0.8 [0.9 }0.912

Y = 1.405

4 1.000[0.995|0.980{0.956|0.922}0.880] 0.830| 0.773| 0.710{ 0.643]0.634

Y = -1.000

jl-l.OOOIO.995 0.980{0.95810,929;0.89: 0.858} 0.820 0.780 0.743{0.739

equation (2') becomes
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{l + (@2)2}-§32 -2 QE.@E.QiEL.+{} + (é@)f} o .0 (12)
3y 3x3 8x 0y Ox9y dx 3y*

This is the welléknown equation of 2 minimal surface, and its
solution can be expressed in terms of analytic funetions of
a conmplex variable,

After the values of q/ao_ have besn found by integrat-
ing the approximate equation (12) under the boundary condi-
tions (3), (4), and (5), the values of the density and the
local Mach number must be determined by means of formuleas
(7) and (9) with the correct value of Y.

The use of the approximate equation (12) can also be
justified by the remark that the constante A and B can be
determined so that the curve (in the p, p—plane) given by
the linear pressure-volume relation

D=4 + % (12)

will be at some point tangent to the curve given by the actual
pressure-~density relation

™Y =p_p =Y

(see references 3 and 4). The linear pressure-volume relation
was introduced by'Tchaplygin and has been used by Busemann,
Demtchenko, Von Kiérmdn, and Tsien.

2. Formulas for the Solution of the Approximate Prodblenm

In a previous report (see reference 5) a method was
iven which permits the constructiaen of solutions of eguation
%12) satisfying the boundary conditions (3), (4), and (5).
It has been shown that this method yields solutions for =all
profiles P possessing at most two sharp edges. The only
restrictive condition concerns the value of q_/a, which

should not exceed ”/% = 0,866, Now for Y = 1,405, Qy = 0,912,

Thus, the method would fail only for profiles for which the
maximum local speed 1s very close to the speed of the undis-
turbed flow - that is, for very thin profiles.
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This method is based upon a transformation of an incom-
pressible flow into a solution of equation (12).

Let M be a2 cloged profile in the §-plane. (¢t =¢ + 1im)

rossessing at most two edges. ILet G(ﬁ) be a nornmalized com-~
plex potential (i.e., the function & = [velocity potential
+ 1(stream function) such that the speed at infinity equals

1) of an incompressible flow around the profile M ; G(f) 1is
an analytic function defined in the domaln exterior t¢ M and
satlisfies the conditions

Gt (=) 1
Im G = constant on N
as well as the Kutta~Joukowsky condition

16 pax < =

(Im = imaginary part of). Let =n be a real number such that

l1<n<22

The function
-y : L
(2.1)z = x + iy = a.:z:_l/’c»(g)‘ T o4t - 5_:2__}.fc,u<;)1+i' at (14)

(the bar denotes the conjugate complex quantity) maps the do-
maln exterior to M into a domain exterior to a closed pro-
file P. The function

P = n® -1 Re € ‘ (15)
(Re = real part of) considered.as a function of x and vy

satisfies the differential equation (12) and the boundary
conditions, (4), (B), and (6), where

=/n2® - 1' (16)

q

N'B

o

Thus ¢ may be considered as the potentlial of a compressible
flow around P. The speed g of the compressible flow (at a
point =z corresponding to a point ) is glven by
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n 4 1
- e’

o 2= 1)% e

[o]

2a,/2, @1 (1) /"

(17)
n+ 1o (n- 1)ty

The angle between the direction of the compressible flow and
the =x-axisg, .

tan-1

6

is given by

8 ~% arg G'(¢) ' (18)

(arg = argument of). In particular, the slope of the profile
P is 1/n times the slope of the profile M , at a correspond-
ing point. If Rp denotes the radius of curvature of P at
a point z and Rn the radiys of curvature at the corre-
sponding point { of m , then

Rp = n{a_g_le'(g)r_lfn _ 2_g_}.-;-G’_’(g}fﬁl/n}Rn (19)

The profile P can be constructed graphically using this
information.

The proofs of these assertions will be found in the re-
port quoted abovs,

Note that for values of n which are close to 1 (i.e.,
for emall values of gq_/a,) the profile P will be slightly

different from m . For,then,the coefficient of the first
integral in (14) is close to 1, the exponent of the integrand
is close to O, so that the fires: term on the right side of
(14) 1s close to £, and the second term is small compared to
the first.

However, the slopes of P and rmn (at corresponding
points) are different. If it is desired that the profile P
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should possess at the two stagnation points angles B,; and
Ba, the profile M must possess at its stagnation points
the angles nP; and nB;.

It will be noted that the method does not yet permit the
solution of the boundary value problem for a given profile.
However, it is possible to choose the "conjugate profile! Tl
in such a manner that the profile P will differ very little
from a given profile.

Remark: If & 4is a one-valued function (l.e., for a
flow without circulation), the formulas (14), (15), (17),
(18), and (19) can be replaced by the simpler relatlons which
a§e equivalent to the formulas found by Tsien (see reference
4

z = E_g_i 4 _-E_%_ib/ne'(g)z at (20)
0 = 'na - 1 Re G (21)
n-1,.,
q = 2 o % 7@ (£)1 (22)
n-1 31@.(@)13
- n + 1)
8 = tan™t G'(¢{) (23)
Rp =-{f ; i1_= ; 1 lsr(g)la} R (24)

However, if there is circuiation, formula (20) does not yield
a closed profile.

3. Incompressible Flow Yielding a Compressible Flow
around a Nearly Circular Cylinder

The method described in the foregoing will be applied
presently to the construction of a circulatory compressible
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flow around a nesarly circular prgfile P. It is naturael to
start with & profile M consisting of an upper arc of the
unit circle jf{! =1 and 2 lower arg of a circle which in-

tersects the first arec at the points § = e=18 ana t =-el$
and forms the angles am with the firet arc, (See fig. 1.)
The center of the lower arc is situated at { = 1(R; sin B

- sin §) where

B =8 -~ (n - 1)m (25)

Its radius is equal to
Ry, = cos 8/cos B

it may be asaumed without loss of generality that 0 < § < %

" and R; < 1.

Let G({) ©be the complex potential of an incompressible

flow past M which possesses stagnation points at ¢{ = e—i8
and { = ~el8 ana nhas the velocity 1 at infinity.

In order to compute G{({) +the domain exterior to r 1is
mapped conformally into the domain iZzZl >R in an suxiliary
Z-plane, by a transformation which takes { = © into 2 = e
and satisfies the condition d42/df{ > 0 at infinity. The

points ¢ = o118 ana t = -e1® are taken into the points
zZ = Re~10 and 2z = -RelT, respectively, where
G e 8 _n-1m (27)
. 2-1n 2-n2
Set
R = cos § (28)

(2 - n)cos ©

then (dZ/d§)§=oo = 1, Hence G(!), considered as a function
of Z, is given by '

2
G =%+ 2.4+ 2Ri sin o log Z (29)
: Z
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At a point ¢ = el® of tre upper arc of Il the speed
of the incompressible fluild {s given by

>

Isin ¢ + sin &}

At a point ¢ = 1(B, sin B - sin 8) + Rleiw of the lower are
of M the spsed of the incompressible flow 1s given by

R® sinA + sin o{2 (31)
Rf sin ¥ + sin Bj

[G‘[i(Rl sin B - &in 8) + Rleiw]l = 2

In these formulas " 1s the argument of the point on the

circle 2] = R 1into which the point ¢ is taken. The an-
gle Lin- o) can be determined by the formulas
2 1
4 1 s ZEw=n
sin =(p + &7J ﬂL
tan (A - o) = 1 jl 2.2 1 - sin o (32)
2 cos o Lcos %(@ - &)

(for a point on the upper arc) and

sin %(W +p) B2

1
cos O

tan %(f\_ g) = - + sin O >(33)

cos Z(¥ ~ 8)
2

(for a point ol the lower are). The details of the computa-
tion will be found in the appendix.

The maximum of |G!j is reached at the top of the pro-
file %, where & =A = %. Hence

5 cosf%(v - 20)
= 2(1 + sin §)R =

16 oy
cos4i(n - 28)

This is easily transformed into

‘G‘" = -—?—__ (1 - sin 6)501;3 iz._:—_.é__

ma&X (2 - n)? 2(2 - n)

(34)
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The incompressible flow around 1 is now transformed
into a compressible flow around the profile P (in the z-
plane). The transformation is given by the formulasg of the
preceding section. By virtue eof (17) and the actual equation
of state, the maximal local Mach number will be equal to 1

if
. A+ 1 _\B
1 = 2. =
jG'lmax"( n - 1 r)
where r 1is determined from the esquation

2r _q/a - >3
1 2 8 o ¥ + 1

- T

For ¥ = 1,405

T 0.3875 . . .

Thus, for a given 8, the maximal admissible n will be
glven by the relation

2 ( 2 /2 - & n o+ 1N\2/2
——Z — (1 - gin §)cot? = T
(2 - n)® 32(2 - n) <n -1
Set
§ = % - 9¢ ' (35)

then ¢ 1s to be determined as the positive root of the
equation

4(n) sin ¢ = tan —5 ' (38)
2 - n
with
-n/z n/a
A(n) = 2C / (11- 1y (37)
2 -~ n n + 1

Jumerical values of n and ¢ determined by this equation
(for ¥ = 1,405) are given in table II. It is seen that the
values of n are very closse to 1.
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The radius of curvature of the profile P can be com-
puted by means of formuls (19), The result of this computa-
tion for various values of n &and 8 are given in tablse
III. It will be noted that the radiuvs of curveture of P
is nearly consbtant. Therefore, the profilse P is nearly a
circle of unit radius: A point ¢ = e? of the upper arc

is taken approximately into the point el ith

(38)

=

]
B o

“®
w {4

A point f = 1(Ry sin B ~ sin §) + Rleiw of the lower circle

is taken apovroximately into the point elW yith

w=\£+n'13 (39)
n 2

This follows from the fact that ths slope of P at a point
z must equal 1/n times the slupe of (1 at 2 corresponding
point {. In particular, the stagnation points of the com-

pressible flow will be situated at e~1% and -el®, yhere

@ will be positive for &> (n - 1)m/2.

Greater accuracy could be achieved by taking as the
radiuve 6f P the arithmetic mean of the values of RP, or

to obtain this radius by a graphical construction of P,
However, this correction seems to be too insignificant to
Justify the additional computational labor. Of course, the
slze of P 1s of no inportance as far as the velocity dis-
tribution is concerned.

The graphical construction of the profile P 1s shown
in figure 2. TFigure 3 contains several examples of profiles
P constructed by this method., The deviation of P from &
eircle 1is remarkadbly emall,
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4, Oritical Mach Number

The critical stream Mach number Mm,c 1s defined as

the value of M, for which the maximal local Mach number
equals 1, In order to compute the critical Mach number for
& flow around a circle with the angle of attack o (the
angle of attack being defined as the negative argument of a
stagnation point), set

0 = 2 - nT _ 2€ - (41)
n 2 n
and
2 - nz-l (42)

1 - (¥ - 1)(n® - 1)
2

where n and ¢ are connected by equation (36). [Cf. (9),
(16), and (40).] In this way the values of M, , as a

function of o (for ¥ = 1,406) given in tadle IV have been
computed. The relation between M and o 1s plotted 1in

figure 4.

™, ¢

5. Velocity and Pressure Distridution

In order to compute the veloclty distribution of a com-
pressible flow .along a circular profile, set

2
2% = 1 + Mo ‘ (43)
1+Y;1M§
8§ = na + (n -~ 1)Z (44)

2

where M, 18 the desired stream Mach number and‘ « the de-
sired angle of attack. Then the dimenslonless speed of the

compressible flow at a point eﬂ“ of the circle 1s given by
formula (17). And |{Gf'|{ must be computed by means of for-

mulas (30) and (31). The first is to be used for %2 W > &,
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the second for - %.S w< -a. (Note that the velocity dis-

tribution is symmetrical with respect to the vertical axis.)
The values of & and Y corresponding to a glven valus of
A are given by equations (38) and (39). In this way the

velocity distribution plotted in figures 5 has been computed,

Once the velocity distributlion is known, the pressure
distribution may be determined by means of squations (7) and
the actual squation of state. The dimenslionless pressure
coefficient

P -
S = g i
1 -]
is given by y 2 \Y/{v-1)
1 - (1 - Y-1 'ag"é‘> - _
s =2 ol (45)
q‘OO (l - Y - 1 q.co Y-1
For an incompressible flow
2
s -.-(.El_. . (48)
Qe

The values of § plotted in figure 6 have been computed by
these formulas,

6. Circulation and Lift

By virtue of (1) the circulation of the compressible
flow 18 equal %o

4
To =!j[ u dx + v dy = aod%ndm

where the integration 1s extended over a closed curve around
the profile P, By (15)

T'e = ag/n® - IM%PG'(C)dQ

integrating over a closed curve around . But by (29)

fc-'(g)dg = -47R sin ©
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Introduce the values of R, 0, and & given by (27), (28),
and (40) to obtain the equation

5 .
- 1 1 ne

= 417 __n______ 8 cos {-nu, + n - 1)— tan
Te 2 -n °© . ( 2 2-n

- 1l ™ ng

n 1s given 1n terms of M, by formula (43).

Por an incompressible flow with the same velocity at
1nfinity and the same position of a stagnation point the cir-
culation is given by

Iy = -4mq_ sln o

The values of [D,/Iy are given in table ¥V and plotted in

figure 7. It will be seen that compresszidility results in a
larger circulation. The additional circulation due to com-
pressibility increases as the Mach number increases but it
decreases as the angle of attack increases.

The Kutta-Joukowsky 1lift formula holds also for com-
pressible flow. (See reference 7.) The 1ift (per unit span)
ie given by

L = pmqmlro[
The dimensibnless 1ift coefficilent for a circle
1o al
2
(r bYeing the radius of the circle) is obtained from (47)

and (16), noticing that thie last formula holds for r = 1.
Thus

GL = ——81—- cos {ncx. + (n - l)-"1 tan —2% . (48)
. 2 - n 2 2 -n .
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Here o is the angle of attack and n is determined by the
stream Mach number. (See equation (43).) TFor an incompress-
ible fluia

01 = 8n sin o (49)

The values of GL are given in table VI and plotted in fig-
ure 8.

7. Comparison with the Kédrmédn-Tsien Method

The application of the lineariged vressures-density rela-
tion (¥ = -1) to compressible flow problems consists of
two steps: (1) the solution of a boundary value problem for
the equation of the minimel surface, and (2) the interpreta-
tlon of the results. The first step is purely mathematical,.
Concerning the second, the following point of view has been
adopted in the present report. The velocity field (i.e.,
the values of q/ao) computed under the assumption Y = =1

1s considered as an apnroximation to the velocity field of a
flow satisfying the actual equaetion of state (with ¥ = 1.40B)
which has the same velocity at infinity. Accordingly, the

stream Mach number M _ is computed from qm/ao by means of

the formula (9) obtained from the actual equation of state.
Von Kérméan and Tsien (references 3 and 4) adopted a different
point of view. They consider the fictitious flow satisfying
the linsarized equation of state as an approximation to the
flow of a compressible fluid possessing the same stream Mach
number. Consequently, they compute the speed of the undie-
turbed flow g, from the stream Mach number by means of the
formula

2 .
1.2 = 8,% —H=_ (50)
1 M

which follows from the linearized equation of state. (Fur-
thermore, they take over from the results obtained by setting
¥ = ~1 only the values of a/qa_.) Other interpretations of

the results are also possible. Their relative merits can be
determined only by comparison with rigorous solutions., If .
equation (50) is compared with equation (89), it is seen that
the theoretical and numericel results of the present report
can be adapted to the Von Karman-Tsien point of view by re-
Placing the valus Mu, wherever 1t occurs by the value
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M
Mo (Kdrmdn-Tsien) = — = (51)

Y + 1 2
ﬁ-v-.—é_—nm

Thig relation is plotted in figure 9b. It is seen that for
the values of the stream Mach number occurring in flows around
a2 circular cylinder the difference between the two values of
M, 18 quite small,

For the case of a circulation-free flow squation (22)
leads to the following velocity correction formulsa

2 _ % 1 - p? (52)
F)
T U,e 1 - p(as/ay,,)
HBere
2 n - 1 +
p, =
n + 1
so that, by (43)
o= ® (53)

M
Y + 1 Y - 1
~/; s M2 +M/& *— M 2

q; 1s the speed of the incompressible flow around the profile

M (i.e., of the flow with the complex potential &), If
profile distortion (the difference between the profiles N

and- P) is neglected, qi may be taken as the speed of an
incompressible flow arocund P, TFormula (52) is the Von Karméan-
Teien velocity corrsction formula, except that these authors
obtain for W the value '

M

o<}

1 +/1 - M

in accordance with their method of intervretlng results ob-
tained by setting Y = -1. (The values at w® are plotted
in figure 9a.) )

o=

Thearetically, formula (52) may be employed for circula-
tlon-free flows only. Nevertheless, it seems worth while %o
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try to use it for circulatory flows as well. Veloelity dis-
tridbutions computed by means of {(52) are shown in figure 5.
Figure 4 gives the values of the critical stream Mach number
computed by means of (52). The agreement with results ob-
tained by the method of this report is rather surprising.

It s due 0 the fact that for clrculatory flows around a
circular profile,the critical values of the stream Mach num-
ber are very low. Greater discrepancy should be expected in
the case of slender profiles.

Remark: The Glauvert~Prandtl correction formulas is de-
rived under the assumption of a nearly uniform flow and
should not be used for & circular profile.

8. Comparison with the Method of Successive Approximatilons

The method of sucecessive approximations has been appliled
to the circulatory flow past a circular cylinder. The first
approximation to the velocity potential has been computed by
Lamb (reference 8), who used the Hayleigh-Janzen scheme and
by Tamatiko and Umemato (reference 9), who used the Poggi
method. In figure 5 velocity distridbutions computed accord-
ing to the formula given by Tamatiko and Umemato are plotted.
Figure 4 shows the values of the stream Mach anumber given by
these authors. Tamatiko and Umemato also give a formula for
the circulation

o1 ¢+ (12 o L g4p® m)Ma
T, iz 3 o

This formule leads to results quite different from those ob-
tained in the present report.

The second approximation to the circulatory flow around
a circular cylinder has been computed recently by Heaslit.
(See reference 10.) His numerical results are given in a
form which does not permit an immediate comparison with the
ones given in thie report.

CONCLUDING® REMARKS

It has been shown that the formula, transforaming a cir-
culatory inocompressibdle flow around a closed profile into a
compressible flow (obeying the linearized equation of state)
may be used for the effective approximate computation of a
purely subsonic flow around a2 profile closely approximating
a given shaps,



NACA TN No. 970 =2

The following qualitative results have been obtained
for the case of a circular cylinder. It may be expected that
they hold also for other shapes. :

1. The eritical value of the stream Mach number H_ .

decreases as the angle of attack o (for the case of & cir=~
cle: the argument of the stagnation point) increases.
However, }nd”c/dm[ decreases as o increases.

2. Compressibility results in a higher value of the cir-
culation (and 1if%) than the ore predicted by the theory of
incompressible fluids for the same position of the stagnation
points. This effect inereases as the stream Mach number in-
creases. However, 1t becomes less pronounced as the angle of
attack increases,

3. The Von Karmidn-Tsien velocity correction formula
(which is theoretically applicable only for flows without
circulation) yilelds good approximate results for circulatory
flows of small stream Mach number and small angle of attack.

Brown University,
Providence, R. I,, September 1, 1844,
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APPENDIX
THE INCOMPRESSIBLE FLOW AROUND THE PROFILE N

The traensformation

-- ¢ + e16

(o e )

23

takes the domain exterior to the profile M (see fig. 1)
into a sector bounded by two rays through the origin which
make the angles (m/2 + B) and -(w/2 - 8) with the real
axis. The transformation

(nf2 - 8)1

Zp = Z, e (a2)

rotates this sector so that the lower ray coincides with the
real axis., The transformation
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1/ (2-n)

75 = 2./ (a3)
maps the rotated sector into the'upper half-plane. The point
f = o 1s taken into Z; =1 by the first transformation,
into Z, = e(ﬂ/a"'{S)i by the second and into 2, = e N by
the third, where

m/2 - §
X =

Finally the transformation

Z = Re - (a4)

(R, o real constants) takes the upper half-plane of the Z,

plane into the domain |[Z| > R, The point 2, = etX (1.e.,

the point { = =) is taken into 2Z = o». The two stagnation
pointe, ¢ = e-18 gna £ = -6l gare taken into Z = Re~10
and Z = —Reic, respectively.

Next, the constants B and ¢ must be determined 50
that

11 (88). .. 1im  (BE 8% 8% E.Z_1.>=1 .
t > o\dt { —>o\a2, a2, 4%, dat

A simple computation yields the values

cos B TT
R = T = = o
{2 - a)cos o' 2 x

Thus, formulas (27) and (28). are verified.

It follows that G(f) considered as a function of Z
must have the form (3.5).

In order to compute the correspondence between the
roints of the profile [ and those of the cirecle |[Z} = R,
note that by (A1) to (44)
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¢ + oi8 (Z + RelC >z'n (45)
§ - e—is 7 . Re-iG
Equation (A5) is that of a Von Karmhn-Trefftz transformation,
as should have been expected. Let { = ¢i® 1be a point on
the upper circle of the profile 1 and Z = RaiA the corre-
sponding point on |Z}] = R. Substitute in (A5) and take ad-
solute values:
cos %(@ - &) cos %(ﬂ\- g)| ®®
— = : (a6)
sin %(@ + §) sin %(f\+ o)

This relation implies formula (32) for the angle %(ﬁ;- o).
Equation (A5) may be written in the form

) D -
¢, + R, elB <z + Rel0 °7% (475
_i8 -~ cr)
§1 - Rl e 1B Z -~ Re 1

where R, and B are given by (25) and (26) and

1 = t + i(ein § - Ry sin B)

Let §; = R, eV pe a point of the lower arc of the profile
M and 2 = ReiA the correspqnding point of the cilrcle

}2F = R. Substituting in (A7) and taking absolute values
yields
cos (¥ - B) cos L(A- o) | =P
2 - 2 (A9)
gin %(W + B) sin %(ﬁ\+ o)

This relation implies formula (33) for the angle %(ﬁ\- o).

In order to compute the speed of the incompressible flow
around M, 16'({)|, at a point of the profile, note that
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: ‘ac) az
IG'(Q)[ =]EE" J-E-El (A10)
For 2 = ReiA,
’EE- = 2 [sin A+ 8in U] (A11)
az | )

Furthermore, for a peint Z = Rei’\ corregsponding to a point
of the upper arc of M (i.e., for -0 < A< 7w + 0)

&z - g QL\[ ’ (412)
- at ad
and by (486)
‘gﬁ - cos 8 gin A + sin ¢ (413)
ad (2 - n)ecos o |sin @ + sin &
By (a10), (a11), (a12), and (A13)
2 s (sin A + sin o)?

[G'(ei@)[ - 2 cos .
(2 - n)® cos” 6 lsin @ + sin 8

This is equation (30).

Similarly, for a point Z = Re1A corregsponding to a
point of the lower arc of M (i.e., for T - M <A < - @)

az R aAn
at] ~ i;{_zm (414)
By (A9)
ant _ cos B sin A + sin of
'dw T~ (2 -~ njeos 0 {sin ¥ + sin B (415)
Thus, by (A10), (Al1), (A14), and (A15)
2 cos® B (sin A + sin &)

P [

(2 - n)® cogB o lsin ¥ + sin Bi“

This is formula (31).



PARLE II.- SOLUTIONS OF EQUATION (36)

‘ON H& VOVH

1.022 | 1.02% | 1.026 | 1.028 | 1.0%30 { 1.032 | 3.034 { 1.036 | 1.033 | 1.04o
11.9%° | 16.45° | 19.65° | 22.15° | 24.21° | 25.95° | 27.45° | 22.78° | 29.95° | 3:1.00°
1,042 | 1.04% | 2,046 | 2.048 | 1,050 | 1.02 | 1.084 ] 1.056 { 1,058 | 1.060
51.96° | 32.82° | 33.62° { 3.3%° | 35.00° | 35.63° | 36.22° | 36.75° | 37.25° | 37.72°
1.062{ 1,064 1.066 | 1.068 | 1.070| 1.072{ i.074 !} 1.076} 1.078 | 1.080
38.16° | 38.57° | 32.96° | 39.33° | 30.67° | 40.00° | 40.3° | 40.60° | Lo.g8® | M1.15°

046

AE
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TABLE IIT
Radii of curvature of the profiles P
5 100 100 | 100 11.436° 20,2090
n 1.005 1,021 1.048 1,068 1,080
d 9.50° 7.940 5,489 50 159
Moq o1 2 B « 380 « 324
'——_—=h===&==
@ RP RP RP RP RP
o 900 .998 «995 1.000 .988 « 957
700 999 ., 998 1.007 1.001 969
& 600 1.000 1.003 1.019 1.016 «983
=% 500 1.002 1.011 1.030 1.033 1.000
g; . 400 1.003 1.018 1.041 1.050 1.018
300 1,005 1.021 1.048 1.063 1.034
200 1,005 1.022 1.048 1.068 1,046
100 1.004 1.012 1,034 1.058 1.050
0o 1,002 1.0086 1.001 1.024 1.042
- 100 883 1,001
~ 200 « 830
% — — —— ]
R
q] RP RP RP RP P
e e
o Qo 987 «827
g1 - 100 .999 977 072 .998
g - 300 1.002 1,009 1,030 1.046 + 991
o} ~ 40° 1.002 1.012 1.033 1.045 l.0082
=1l . 500 1,002 1,011 1.030 1.037 1.004
- 800 1.008 1.007 1.024 1.087 1,002
- 809 1.001 1.003 1.013 1.010 «998
- 9060 1.001 1,003 1.012 1,008 «995




OF THE POSITION OF THE STAGNATION POINT

TABLE IV.- CRITICAL STREAM MACE NUMEER AS A FUNCTION

o 20 yo 6° g° 10° 12° 140 16° 13° 20°
14&53' o.dice | o0.387 | 0.373 | o0.360 | o.3u8 | 0.337 | 0.327 | o.318 | 0.309 | 0.300
@ 22° a° | 26° 2g° 3° | 3° 3n° 36° 38" o’
Mo | 0-293 | 0.286 | 0.279 | 0.273 | 0.267 | 0.262 | 0.257 | 0.252 | 0.2U8 | 0,24
o | uw° 1y 46° g’ 50° 52° 5 56 58° 60°
M_.|o.2% | 0.236 | 0.232 | 0.229 | 0,226 | 0.223 | 0.221 | 0.219 | 0.217 | 0.215

"ON NI VOVX

046

6e




NACA TN No. 970 TABLE V
Ratio of thé_circulation of the compressible flow
to the circulation of the incompressible flow.
.10 .15 .20 .25 +&0 «35
10| 1.01489 | 1.03357 | 1.05984 |1,09383 |1.13570 1.18564
20| 1,01475 | 1.03325 | 1.,05926 | 1.09290 |1,13431 |1.18366
30 | 1.01461 | 1.03293 | 1.05869 |1,09198 | 1.13293 | 1.18169
40| 1.,01448}1,03262 | 1.05812 |1,09108 | 1,13158 | 1.17975
50| 1.,01434 | 1.03231 | 1.05756 | 1,09015 | 1,13020 | 1.17782
7%9 1,01401 | 1.03155 | 1.05616 | 1,08790 | 1.12684
100 { 1.,01367 | 1.03079 | 1.05477 | 1.08567 | 1.12352
159 | 1.01302 | 1.02928 | 1.05203 | 1,08127 | 1.11696
200 | 1.01236 | 1.02777 1.b4gsod 1.07689 | 1.11044
30° {1.01102 | 1.02472 | 1,04377 | 1.06808
40° | 1.00962 | 1.02153 | 1.03798
450 | 1.00888 | 1.01984 | 1.03494
TABLE VI
'Iift Coefficient
| .10 .15 «20 25 .30 35
o i
10 ~4452 4534 .4649 .4798 | .4982 5201
20 .8901 .9083 .9291 .9588 .9949 | 1.0382
30 1.3346 | 1.3587 | 1.3925 | 1.4363 | 1.4902 | 1.5543
40 1.7786 { 1.8104| 1.8551 | 1.9128 | 1,9838 | 2.0683
50 2.2219 | 2.2612 | 2.3165 | 2,3879 | 2.4757 | 2.5800
730 | 3.8264 | 3.3840 | 3.4647 | 3.5688 | 8.6966
100 4,4239 | 4.4986 | 4.6083 | 4.7382 | 4.9033
150 6.5895 | 6.6953| 6.8433 | 7.0335 | 7.2856
200 8.7021 | 8.8347 | 9,0197 | 2.2568 | 9.5453
300 {12.7049 | 12.8770 | 13,1164 | 13,4812
40° |16.3104 | 16.5028 | 16.7686
450 |17.9293 | 18.1241 | 18,3924

30
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Figure 4.- Critical stream Mach number as a function of the
position of the stagnation point.
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